
ØMQ for OpenVMS I64 and Alpha

ZeroMQ Kit Notes V02 Page 1

ØMQ for OpenVMS I64 and Alpha
Brett Cameron (brett.cameron@hp.com), John Apps (john.apps@hp.com) January 2011

Disclaimer: the information in this document is the sole responsibility of the authors. The
information contained herein is offered on a best-effort basis. Hewlett-Packard offers no
support or warranty on any of the content in this document or the software described in it.

1. Introduction
Thank your for your interest in this port of ØMQ (ZeroMQ) to OpenVMS. The current release of
ØMQ for OpenVMS is based on the ØMQ 2.1.0 distribution.

ØMQ (http://www.zeromq.org) is a messaging system that aims to address many of the
problems of more traditional enterprise messaging solutions such as complexity and bloat. ØMQ
tackles these issues by taking a different approach. Instead of inventing new APIs and complex
wire protocols, ØMQ extends the socket API, eliminating the learning curve and allowing a
network programmer to master it in just a few of hours.

The wire protocols employed by ØMQ are deliberately simplistic, even trivial, and performance of
ØMQ matches and often exceeds that of raw sockets. Speeds of over 8 million messages per
second with a latency of some 12µs have been measured using standard Intel hardware and
Linux together with Infiniband. Less spectacular results will be obtained with standard OpenVMS
configurations; however good performance combined with the simplicity of the ØMQ
programming model make the software an excellent option for the development of any TCP/IP
sockets-based application.

This OpenVMS port of ØMQ includes almost all ØMQ. The port presently does not provide
support for reliable multicast (via OpenPGM) and does not support direct (non-TCP/IP) inter-
process communication. It is anticipated that these deficiencies will be addressed in future
releases.

2. Acknowledgements
The authors would like to acknowledge the support and assistance of the ØMQ team in the
creation of this release. We would also like to thank Brian Reiter for providing the Pascal
examples.

3. What’s new in this release
 Minor modifications to the OpenVMS ØMQ API (improved error checking in several API

functions)

 64-bit pointer support on OpenVMS Integrity

 Inclusion of Pascal examples (see acknowledgements above)

4. Requirements
The kit you are receiving has been compiled and built using the operating system and
compiler versions listed below. While it is highly likely that you will have no problems installing
and using the kit on systems running higher product versions of the products listed, we cannot
say for sure that you will be so lucky if your system is running older versions. If you require a
kit for a different configuration, we will do what we can to oblige. Note that the UnZip utility is
required in order to unpack the ZIP kit.

 OpenVMS 8.3 (I64 or Alpha) or higher

 HP TCP/IP Services V5.6 or higher

It has not been verified whether the kit works with the MultiNet TCP/IP stack, but there is a
good chance that it will.

 C compiler - HP C V7.1-015 or higher

mailto:brett.cameron@hp.com
mailto:john.apps@hp.com
http://www.zeromq.org/

ØMQ for OpenVMS I64 and Alpha

ZeroMQ Kit Notes V02 Page 2

 C++ compiler - HP C++ V7.3-009 or higher

Note that the C++ is required in order to build ØMQ applications. Specifically, the

CXXLINK utility must be used on OpenVMS Alpha in order to link applications; on

OpenVMS Integrity, the standard LINK command may be used.

 UnZip 5.42 (or similar) for OpenVMS (required to unpack the ZIP kit and can be found on
the OpenVMS Freeware CD)

In addition to the above requirements, it is assumed that the reader has a good knowledge of
OpenVMS and of software development in the OpenVMS environment.

5. Recommended reading
Before getting too carried away, be sure to read (or at least browse) the very comprehensive
documentation on the ØMQ web site (http://www.zeromq.org). In addition to programming
guides, there are whitepapers and assorted other documents that provide plenty of useful
information on how ØMQ can be used.

6. Contents of the kit
The kit is currently provided as a ZIP file (created using Zip 2.3 for OpenVMS), which allows
individual users to install the software under their own accounts, if so desired.

The following file listing represents the output from the unzip -l command run against the

ZIP file kit on OpenVMS Alpha (the listing on OpenVMS I64 would be very similar).

Archive: CCOX05$DKB100:[BIGGLES]ZEROMQ-210-VMS-AXP.ZIP;1

 Length Date Time Name

 -------- ---- ---- ----

 0 05-10-10 19:55 zmq/bin/

 9603 10-16-10 06:26 zmq/copying.lesser

 35149 01-10-11 12:43 zmq/copying.txt

 0 05-10-10 19:55 zmq/doc/

 0 05-10-10 19:55 zmq/examples/

 0 05-10-10 19:55 zmq/include/

 0 05-10-10 19:55 zmq/lib/

 535 12-17-10 08:57 zmq/zmq$startup.com

 2415104 01-10-11 12:39 zmq/bin/zmq$shr.exe

 185344 01-10-11 12:40 zmq/bin/zmq_forwarder.exe

 184832 01-10-11 12:40 zmq/bin/zmq_queue.exe

 185344 01-10-11 12:40 zmq/bin/zmq_streamer.exe

 22788 10-16-10 06:41 zmq/doc/zmq.html

 16971 10-16-10 06:41 zmq/doc/zmq_bind.html

 14206 10-16-10 06:41 zmq/doc/zmq_close.html

 16948 10-16-10 06:41 zmq/doc/zmq_connect.html

 22316 10-16-10 06:41 zmq/doc/zmq_cpp.html

 19829 10-16-10 06:41 zmq/doc/zmq_epgm.html

 14329 10-16-10 06:41 zmq/doc/zmq_errno.html

 13244 10-16-10 06:41 zmq/doc/zmq_forwarder.html

 28250 10-16-10 06:41 zmq/doc/zmq_getsockopt.html

 14060 10-16-10 06:41 zmq/doc/zmq_init.html

 16250 10-16-10 06:41 zmq/doc/zmq_inproc.html

 15833 10-16-10 06:41 zmq/doc/zmq_ipc.html

 14634 10-16-10 06:41 zmq/doc/zmq_msg_close.html

 14927 10-16-10 06:41 zmq/doc/zmq_msg_copy.html

 14146 10-16-10 06:41 zmq/doc/zmq_msg_data.html

 14966 10-16-10 06:41 zmq/doc/zmq_msg_init.html

 15693 10-16-10 06:41 zmq/doc/zmq_msg_init_data.html

 15035 10-16-10 06:41 zmq/doc/zmq_msg_init_size.html

 14533 10-16-10 06:41 zmq/doc/zmq_msg_move.html

 14158 10-16-10 06:41 zmq/doc/zmq_msg_size.html

 19829 10-16-10 06:41 zmq/doc/zmq_pgm.html

 19641 10-16-10 06:41 zmq/doc/zmq_poll.html

 13228 10-16-10 06:41 zmq/doc/zmq_queue.html

 17692 10-16-10 06:41 zmq/doc/zmq_recv.html

 17799 10-16-10 06:41 zmq/doc/zmq_send.html

 30165 10-16-10 06:41 zmq/doc/zmq_setsockopt.html

 34337 10-16-10 06:41 zmq/doc/zmq_socket.html

 13243 10-16-10 06:41 zmq/doc/zmq_streamer.html

 14225 10-16-10 06:41 zmq/doc/zmq_strerror.html

 19998 10-16-10 06:41 zmq/doc/zmq_tcp.html

http://www.zeromq.org/

ØMQ for OpenVMS I64 and Alpha

ZeroMQ Kit Notes V02 Page 3

 14738 10-16-10 06:41 zmq/doc/zmq_term.html

 14253 10-16-10 06:41 zmq/doc/zmq_version.html

 1526 01-10-11 11:39 zmq/examples/build.com

 3469 06-11-10 22:11 zmq/examples/cob_remote_lat.cob

 1589 06-11-10 22:11 zmq/examples/f_local_lat.for

 2770 01-10-11 11:36 zmq/examples/p_local_lat.pas

 3157 01-10-11 11:36 zmq/examples/p_remote_lat.pas

 3280 01-10-11 11:36 zmq/examples/zmq.pas

 3701 06-11-10 14:51 zmq/include/zmq.cpy

 8728 10-16-10 06:40 zmq/include/zmq.h

 6652 10-16-10 06:40 zmq/include/zmq.hpp

 4857 06-16-10 09:32 zmq/include/zmq.inc

 2404352 01-10-11 12:39 zmq/lib/libzmq.olb

 -------- -------

 6022256 55 files

6.1. Installing the kit
Unpacking and installing the ZIP file kit is very straightforward. After copying the supplied ZIP

file (ZEROMQ-210-VMS-AXP.ZIP for OpenVMS Alpha or ZEROMQ-210-VMS-I64.ZIP for

OpenVMS I64) to a suitable location, unpack the contents of the relevant ZIP file using the

unzip command.

For example, for the Alpha kit, you would enter the following command:

$ unzip ZEROMQ-210-VMS-AXP.ZIP

After unpacking the kit, you will have a [.zmq] directory below your current directory that

contains files listed above. Note that you can install the software onto either an ODS2 or an
ODS5-formatted disk.

6.1.1. Post-installation steps

To complete the installation it is necessary to define the concealed logical name ZMQ$ROOT to

point to your top-level [.zmq] directory and to define a logical name for the shareable image

ZMQ$SHR.EXE. You may optionally wish to install the shareable image.

A sample command procedure called ZMQ$STARTUP.COM that illustrates these logical name

definitions and installation of the shareable image is provided in the top level [.zmq]

directory (see listing below). You may wish to modify this file as required and include it in your
system start-up procedure.

$! ZMQ$STARTUP.COM

$!+

$! 17-Dec-2010

$! Startup file for ZeroMQ 2.1.0 on OpenVMS

$!-

$

$ set noon

$!

$ if f$trnlnm("zmq$root","lnm$system_table",,,,) .eqs. ""

$ then

$! Modify definition for zmq$root as appropriate

$!

$ define/sys/exec/tran=(conc,term) zmq$root dorone$dka0:[zmq.]

$ endif

$

$

$ write sys$output "ZMQ-I-INSTALL, Installing ZMQ$SHR"

$ define/sys/exec zmq$shr zmq$root:[bin]zmq$shr.exe

$ install replace zmq$shr/header_resident/open/shared

$

$ write sys$output "ZMQ-I-DONE, Startup complete"

$!

$ exit

Note that in the above example the ZMQ$ROOT logical name is defined in the system table. It

is possible to define the logical name at a lower level (such as GROUP level) in order that

multiple users may run ØMQ in their own process space.

ØMQ for OpenVMS I64 and Alpha

ZeroMQ Kit Notes V02 Page 4

6.2. Privileges and quotas
Generally speaking there are no special quota or privilege requirements for applications

developed using ØMQ, although a high BYTLM is recommended, and SYSPRV, BYPASS, or

OPER privilege will be required if ØMQ processes need to utilise privileged ports (ports below

1024).

The authors typically operate (on OpenVMS IA64) with quota settings similar to the following,
which should be more than adequate for most purposes:

Maxjobs: 0 Fillm: 256 Bytlm: 128000

Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0

Maxdetach: 0 BIOlm: 150 JTquota: 4096

Prclm: 50 DIOlm: 150 WSdef: 4096

Prio: 4 ASTlm: 300 WSquo: 8192

Queprio: 4 TQElm: 100 WSextent: 16384

CPU: (none) Enqlm: 4000 Pgflquo: 256000

7. Sample applications
The zmq$root:[samples] directory contains two simple examples that can be used to

measure latency
1
 and throughput. These examples can be compiled and linked using the

provided build procedure (build.com). Once built, these programs are simple to run. For

example, for the latency example, to measure the latency for a 16-bytes message using a
sample size of 10000 messages, on one machine we could run the following command:

$ mcr []local_lat.exe "tcp://16.156.32.107:5555" 16 10000

And on another machine we would enter the following command:

$ mcr []remote_lat.exe "tcp://16.156.32.107:5555" 16 10000

When the run completes, remote_lat.exe will display the results as follows (the latency will

vary, depending on your specific hardware, operating system, and network configuration):

message size: 16 [B]

roundtrip count: 10000

average latency: 296.000 [us]

In addition to these examples, additional example code may be found on the ØMQ web site.
For example, see http://www.zeromq.org/docs:cookbook.

8. What’s missing?
As noted previously, the bulk of the ØMQ functionality is present, and it should be possible to
do much of what is described on the ØMQ web site. Support for reliable multicast (via
OpenPGM) is not currently supported, nor is non-TCP/IP IPC.

Under UNIX/Linux, ØMQ leverages UNIX sockets to provide an efficient non-TCP/IP IPC
mechanism; however such facilities are not available on OpenVMS and the authors are
considering various other options.

ØMQ also supports a range of language bindings, including scripting languages such as Ruby
and Lua, and 3GL languages such as Ada. The authors are working to provide similar options on
OpenVMS, including a version of the ØMQ API that can be readily called from any OpenVMS
3GL, such as COBOL, FORTRAN, and so on (much of this work has in fact been completed;
however further testing, documentation, and creation of examples is required before the API can
be made available).

1
 Latencies on the order of 200µs on an rx2620 have been achieved on OpenVMS Integrity. Latencies

on OpenVMS Alpha may be 4 or 5 times greater, depending on the age and configuration of the
hardware and software in question.

http://www.zeromq.org/docs:cookbook

ØMQ for OpenVMS I64 and Alpha

ZeroMQ Kit Notes V02 Page 5

Appendix

Tools

Over time the authors will update this document with tools they have found useful in the
course of their work. The authors welcome any suggestions and will include them in future
versions of the document.

 Zip and UnZip for OpenVMS may be obtained from the OpenVMS freeware CD at
http://h71000.www7.hp.com/openvms/freeware/.

http://h71000.www7.hp.com/openvms/freeware/

